
RAMANUJAN SERIES UPSIDE-DOWN

JESUS GUILLERA AND MATHEW ROGERS

Abstract. We prove that there is a correspondence between Ramanujan-type
formulas for 1/π and formulas for Dirichlet L-values. Our method also allows
us to reduce certain values of the Epstein zeta function to rapidly converging
hypergeometric functions. The Epstein zeta functions were previously studied by
Glasser and Zucker.

1. Introduction

Quantities such as π2 and the Dirichlet L-values are fundamental constants which
appear in many areas of mathematics and physics. It is interesting to relate them
to hypergeometric functions, which are important because of their applications in
number theory. For instance, Ramanujan discovered many famous hypergeometric
formulas for 1/π [17]. The following example is originally due to Bauer [2], but is
easily derived with Ramanujan’s methods:

1

π
=
∞∑
n=0

(−1)n

26n

(
2n

n

)3(
1

2
+ 2n

)
. (1)

Such results are connected to class number problems, and to the theory of complex
multiplication [6], [8]. In this paper we describe identities which are closely related
to Ramanujan’s formulas. Our first example can be constructed by manipulating
(1). Let (1/2 + 2n) 7→ (1/2 − 2n), flip the rest of the summand “upside-down”,
insert a factor of 1/n3, and perform the summation for n ≥ 1. Then we obtain a
companion series identity :

8L−4(2) =
∞∑
n=1

(−1)n26n

n3
(
2n
n

)3 (1

2
− 2n

)
. (2)

As usual L−4(2) = 1− 1
32

+ 1
52
. . . is Catalan’s constant, Lk(s) :=

∑∞
n=1

χk(n)
ns

denotes

the general Dirichlet L-series, and χk(n) =
(
k
n

)
is the Jacobi symbol. Based on this

example, we might venture a guess that the same procedure should transform each
of Ramanujan’s formulas into identities involving Dirichlet L-values. We prove that
this guess is correct when certain technical conditions are added. It is important
to note that at least nine related formulas already exist in the literature. The
individual formulas were discovered piecemeal with computational techniques, and
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were mostly proved by variations of the Wilf-Zeilberger method. We mention proofs
due to Zeilberger [21], Guillera [11] [12] [14], and the Hessami-Pilehroods [15]. Sun
also conjectured several identities [18]. We give unified proofs of all of these results
and conjectures in Theorem 3. We also show how to construct vast numbers of
irrational formulas (such as (65) and the examples in Table 5), which were previously
unknown. We describe our results in greater detail below.

Ramanujan identified seventeen formulas for 1/π [17]. His identities all have the
following form:

1

π
=
∞∑
n=0

(s)n
(
1
2

)
n

(1− s)n
(1)3n

(a+ bn)zn, (3)

where (x)n = Γ(x+ n)/Γ(x). Each example has s ∈ {1
2
, 1
3
, 1
4
, 1
6
}, with (a, b, z) being

parameterized by modular functions [6], [8]. When s = 1
6
, z = 1

j(τ)
, where j(τ) is the

j-invariant, and the expressions for a and b involve Eisenstein series. If we preserve
the modular parameterizations for (a, b, z), then the general companion series is
given by

∞∑
n=1

(1)3n
(s)n(1

2
)n(1− s)n

(a− bn)

n3
z−n. (4)

When n is large, standard asymptotics show that

(s)n
(
1
2

)
n

(1− s)n
(1)3n

∼ sin(πs)

(πn)3/2
.

It follows that (3) and (4) can only converge simultaneously if |z| = 1 (notice that (1)
and (2) occur when s = 1

2
and (a, b, z) =

(
1
2
, 2,−1

)
). Divergent cases make sense,

as long as each divergent infinite series is replaced by an analytically-continued
hypergeometric function. Once of the main goals of this work, is to transform
divergent formulas for 1/π, into interesting convergent formulas for Dirichlet L-
values.

Suppose that s ∈ {1
2
, 1
3
, 1
4
}. Then Propositions 2 and 3 reduce many values of

the companion series (4), to linear combinations of two Epstein zeta functions and
elementary constants. In general, once we fix the modular parameterizations for
(a, b, z) in (4), then Propositions 2 and 3 impose restrictions on the domain of the
modular functions (see the constraints on equations (50) and (51)). This means
there are fewer potential companion series evaluations, compared to the number of
possible Ramanujan-type formulas from (3). Finally, if the linear combination of
Epstein zeta functions reduces to Dirichlet L-values, which is not automatic, then
the companion series also reduces to Dirichlet L-values. Proofs are based upon a
new idea called completing the hypergeometric function, which we outline in Section
3. The approach fails completely when s = 1

6
, and we describe the rationale for this

failure at the end of Section 3. The Epstein zeta functions which appear have been
studied by Glasser and Zucker [10]. Following their notation, define

S(A,B,C; t) :=
∑

(n,m) 6=(0,0)

1

(An2 +Bnm+ Cm2)t
. (5)
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We demonstrate a calculation by proving (2). Set q = −e−π
√
2 in (46). Then

(a, b, z) = (1
2
, 2,−1). By equation (50), we have
∞∑
n=1

(−1)n

n3

(1)3n(
1
2

)3
n

(
1

2
− 2n

)
=

32
√

2

π2
(S(1, 0, 8; 2)− S(3, 4, 4; 2)) .

The key to completing the proof, is to reduce S(A,B,C; t) to Dirichlet L-values. It
is fortunate that this is a well-known problem. Let us briefly recall that quadratic
forms with fixed discriminant D = B2−4AC, are partitioned into equivalence classes
under the action of SL2(Z). We say that quadratic forms of discriminant D < 0
have one class per genus, when disjoint classes of forms always represent disjoint sets
of integers. Glasser and Zucker conjectured that S(A,B,C; t) reduces to Dirichlet
L-values, if and only if An2 + Bnm + Cm2 lives in a class of quadratic forms with
one class per genus. Despite the fact that Zucker and Robertson discovered a few
strange counterexamples to this conjecture [23], most evidence suggests that the
original conjecture is “more-or-less” correct. Every interesting companion series
boils down to two values of S(A,B,C; 2), and elementary constants. The proof of
(2) follows from showing

S(1, 0, 8; 2) =
7π2

48
L−8(2) +

π2

8
√

2
L−4(2),

S(3, 4, 4; 2) =
7π2

48
L−8(2)− π2

8
√

2
L−4(2).

Notice that S(3, 4, 4; t) does not correspond to a reduced quadratic form (C ≥ A ≥
|B|), but it is possible to show that S(3, 4, 4; t) = S(3, 2, 3; t). This type of reasoning
explains all of the previously known companion series formulas, and all of the results
in Theorems 3 and 4.

There are many instances where it is probably impossible to express S(A,B,C; t)
in terms of Dirichlet L-values. Then our method produces non-trivial hypergeomet-
ric formulas for S(A,B,C; 2). For example, set q = −e−π/3 in (46). After some
work we obtain

48

π2
S(1, 0, 36; 2) =

140

27
L−4(2) +

13√
3
L−3(2)−

∞∑
n=1

(1)3n
(1
2
)3n

(a− bn)

n3
z−n, (6)

where

z =− 8
(
74977 + 40284r + 21644r2 + 11629r3

)
,

a =
1

18

(
1038 + 558r + 300r2 + 161r3

)
,

b =
1

3

(
387 + 208r + 112r2 + 60r3

)
,

and r = 4
√

12. Formula (6) converges very rapidly because z ≈ −2.4 × 106. The
infinite series can either be expressed as a 5F4 function, or as a linear combination of
two 4F3’s. In either case, this partially resolves a question of Zucker1 and McPhedran

1Zucker’s dream is to resolve S(1, 0, 36; t) in terms of Dirichlet L-values with complex characters.
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[22], who asked whether or not S(1, 0, 36; t) reduces to known quantities. See Section
5 for the proof of (6), and for additional examples.

2. Review of Ramanujan’s formulas

We begin with a brief review of Ramanujan’s formulas. Suppose that (3) holds
for certain values of (a, b, z) and s. Since we are allowing the possibility that |z| > 1,
the identity is best interpreted as:

1

π
= bz

d

dz
3F2

(
s, 1

2
, 1− s
1, 1

∣∣∣∣ z)+ a 3F2

(
s, 1

2
, 1− s
1, 1

∣∣∣∣ z) . (7)

If we generically assume that s is a fixed constant, then only two out of the three
parameters (a, b, z) can be chosen independently. For brevity we use the notation

y0(z) := 3F2

(
s, 1

2
, 1− s
1, 1

∣∣∣∣ z) .
Let us suppose that q and z are related by the differential equation:

dq

dz
=

q

z
√

1− z y0(z)
, (8)

subject to the initial condition that z = 0 when q = 0. Then we choose a and b to
be given by:

a =
1 + q log |q| d

dq
log y0(z)

π y0(z)
, b = − log |q|

π

√
1− z. (9)

Once the parametrization for b is fixed, the formula for a follows automatically
from solving (7), and then simplifying the differential using (8). Thus for many
choices of z, we can (in principle) calculate values of a and b which make (7) valid.
Ramanujan’s miraculous observation is that (a, b, z) can be algebraic simultaneously.

The parameters in (7) can be evaluated using the theory of modular forms. First
express z in terms of q by integrating and then inverting (8). The inverse expressions
are related to theta functions if s ∈ {1

2
, 1
3
, 1
4
, 1
6
}. For instance when s = 1

2
, we have

z = 4
θ43(−q)
θ43(q)

(
1− θ43(−q)

θ43(q)

)
, (10)

where

θ3(q) :=
∞∑

n=−∞

qn
2

.

If we let q = e2πiτ , then z is a weight-zero modular function in τ . It follows from the
theory of complex multiplication, that z is algebraic if τ is a quadratic irrational in
the upper half plane. In those instances, equation (9) implies that b is also algebraic,
because b = − Im (τ)

√
1− z. In order to calculate a, we require formulas such as

y0(z) = θ43(q), (11)
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which are only valid if q lies in a neighborhood of zero2. If we use eta product

expansions (in this case θ3(q) = η5(q2)
η2(q)η2(q4)

), and then substitute (11) into (9), we

arrive at an expression involving theta functions and Eisenstein series, which can
also be explicitly evaluated. It is typically quite painful to calculate z and a, however
various examples of these calculations are given in [3], [7], [8], [6].

Proposition 1. Assume that (a, b, z) and q are related by (8) and (9). Suppose that
f(z) is a differentiable function, and let

φf (q) =
f(z)

y0(z)
.

Then

af(z) + bz
df(z)

dz
=

1

π

(
φf (q)− log |q| qdφf (q)

dq

)
. (12)

Proof. From the right-hand side we have

1

π

(
φf (q)− log |q| qdφf (q)

dq

)
=

1

π

(
f(z)

y0(z)
− log |q| q d

dq

f(z)

y0(z)

)
=

1

π

f(z)

y0(z)
− log |q| q

πy20(z)

(
y0(z)

df(z)

dq
− f(z)

dy0(z)

dq

)
=

1

π

(
1

y0(z)
+

log |q|
y20(z)

q
dy0(z)

dq

)
f(z)

−
(

log |q|
πy0(z)

q

z

dz

dq

)
z
df(z)

dz

= af(z) + bz
df(z)

dz
.

The final step follows from (9). �

Proposition 1 allows us to insert a factor of (a + bn) into a power series. For
example, if f(z) = y0(z), then φf (q) = 1. We have

1 =
1

y0(z)

∞∑
n=0

(s)n(1
2
)n(1− s)n
(1)3n

zn.

By Proposition 1 this becomes

1

π

(
1− log |q| q d

dq

)
· 1 =

(
a+ bz

d

dz

)
·
∞∑
n=0

(s)n(1
2
)n(1− s)n
(1)3n

zn,

hence
1

π
=
∞∑
n=0

(s)n(1
2
)n(1− s)n
(1)3n

(a+ bn)zn.

We typically need to obtain a q-series expansion for f(z)/y0(z), before applying
Proposition 1.

2Equation (11) holds when q lies in a neighborhood of zero. We can analytically continue the
formula along a ray from q = 0, until we reach a value of q for which z ∈ [1,∞).
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3. Completing the hypergeometric function

In this section we introduce the idea of completing a hypergeometric function.
Hypergeometric functions are typically defined by an infinite series, and then an-
alytically continued to a slit plane. To complete a hypergeometric function, let
n 7→ n+ x in the series definition, and extend the sum over n ∈ Z. To fix notation,
let yx(z) denote the extended hypergeometric series :

yx(z) :=
∞∑
n=0

(
1
2

)
n+x

(s)n+x (1− s)n+x
(1)3n+x

zn+x

= zx
(
1
2

)
x

(1− s)x (s)x
(1)3x

4F3

(
1, 1

2
+ x, 1− s+ x, s+ x

1 + x, 1 + x, 1 + x

∣∣∣∣ z) .
(13)

Notice that yx(z) extends y0(z) to a function of two variables. Transformations for
extended hypergeometric functions often arise as byproducts when one discovers
Wilf-Zeilberger pairs [12]. The completed version of y0(z) is a formal sum∑

n∈Z

(s)n+x
(
1
2

)
n+x

(1− s)n+x
(1)3n+x

zn+x, (14)

which involves powers of z and z−1. If we interpret the positive (n ≥ 0) and negative
(n < 0) halves of the sum as hypergeometric functions, then (14) becomes a well-
defined function:

Yx(z) :=zx
(
1
2

)
x

(1− s)x (s)x
(1)3x

4F3

(
1, 1

2
+ x, 1− s+ x, s+ x

1 + x, 1 + x, 1 + x

∣∣∣∣ z)
− 2x3zx−1

s(1− s)

(
−1

2

)
x

(s− 1)x(−s)x
(1)3x

4F3

(
1, 1− x, 1− x, 1− x

3
2
− x, 2− s− x, 1 + s− x

∣∣∣∣ 1

z

)
.

(15)

The 4F3 functions have branch cuts on [1,∞) and [0, 1] respectively, and we take
the branch cut of zx on [0,∞). Thus Yx(z) is certainly analytic for z ∈ C \ [0,∞).
From (14) it is obvious that Yx(z) is periodic in x:

Yx(z) = Yx+1(z).

Periodicity in x extends to (15), because 4F3 functions always obey recurrence rela-
tions in their parameters. Below we prove that Yx(z) equals a trigonometric poly-
nomial in x, and then we use this fact to develop a q-series expansion for the com-
panion series in Theorem 1. Before proceeding, we note that our method applies
to various additional hypergeometric functions. If we apply the same procedure to

2F1

(
1
2
, 1
2

1

∣∣∣ z), then we can recover a q-series formula due to Duke [9, Eqn. (2.2)].

Lemma 1. Suppose that s ∈ (0, 1) and z 6∈ {0, 1}. There exist functions u := u(z)
and v := v(z) which are independent of x, such that

Yx(z) = y0(z)
eiπx sin2 πs

cos πx(cos2 πx− cos2 πs)
(−u+ (u+ 1) cos 2πx− iv sin 2πx) . (16)
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Proof. Consider the Picard-Fuchs operator which annihilates y0(z). Let

P :=

(
z
d

dz

)3

− z
(
z
d

dz
+

1

2

)(
z
d

dz
+ s

)(
z
d

dz
+ 1− s

)
. (17)

If convergence issues are ignored, then it is easy to show that P also annihilates
(14). This allows us to extrapolate

PYx(z) = 0. (18)

It is possible to prove (18) using standard rules for differentiating hypergeometric
functions, but we leave this as an exercise. Since P annihilates Yx(z), the function
has the form:

Yx(z) = m0(x)y(0)(z) +m1(x)y(1)(z) +m2(x)y(2)(z), (19)

where each y(i) is a linearly independent solution of Py = 0. The linear independence
property implies that mi(x) = mi(x+ 1) for all i (if the mi’s are not periodic, then
Yx(z)−Yx+1(z) = 0 leads to a linear dependence between y(i)’s). We derive formulas
for mi(x) below. The strategy is to select a particular value of z so that we can place
an upper bound on Yx(z). Since the function decomposes into independent functions
of x and z, we can use equation (19) to bound each mi(x) independently. Then we
deduce that each mi(x) has a terminating Fourier series after being multiplied by
suitable trigonometric functions. We then conclude that (16) holds for all z 6∈ {0, 1}.

Suppose that s ∈ (0, 1), and that z is not a singular point of Yx(z) (we exclude
z = 0 and z = 1). Since Yx(z) = Yx+1(z), we assume without loss of generality
that Re(x) ∈ [0, 1). We claim that Yx(z) is meromorphic in x, with simple poles
at x ∈ {s, 1

2
, 1 − s}. To prove this, first recall that 4F3 (a1, a2, a3, a4; b1, b2, b3; z), is

meromorphic with respect to each bi, provided z is not a singular point [16, pg. 405].
Poles occur if bi ∈ {0,−1,−2, . . . }. Since (Re(x), s) ∈ [0, 1) × (0, 1), it is easy to
check that the quantities {1 + x, 3

2
− x, 2− s− x, 1 + s− x} are never equal to zero

or negative integers. Thus the 4F3 functions in (15) do not contribute poles. Next
observe (

−1
2

)
x

(s− 1)x(−s)x
(1)3x

=
Γ(−1

2
+ x)Γ(s− 1 + x)Γ(−s+ x)

Γ
(
1
2

)
Γ(−s)Γ(s− 1)Γ3(1 + x)

,(
1
2

)
x

(1− s)x (s)x
(1)3x

=
Γ(1

2
+ x)Γ(1− s+ x)Γ(s+ x)

Γ(1
2
)Γ(1− s)Γ(s)Γ3(1 + x)

.

The first ratio of Pochhammer symbols contributes simple poles when x ∈ {s, 1
2
, 1−

s}, and the second ratio of Pochammer symbols is analytic for (Re(x), s) ∈ [0, 1)×
(0, 1). By the linear independence argument above, we conclude that mi(x) is at
worst meromorphic with simple poles when x ∈ {s, 1

2
, 1− s}.

Now we show that mi(x) = O(| Im(x)|−3/2e−π Im(x)) when | Im(x)| is sufficiently
large. Let z be a negative real number in a compact subinterval of (−1, 0). Then
z = ρeπi for some ρ ∈ (0, 1). Thus |zx| = |ρxeπix| = ρRe(x)e−π Im(x) < e−π Im(x).
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Formula (15) becomes

|Yx(z)| <e−π Im(x)

∣∣∣∣∣
(
1
2

)
x

(1− s)x (s)x
(1)3x

4F3

(
1, 1

2
+ x, 1− s+ x, s+ x

1 + x, 1 + x, 1 + x

∣∣∣∣ z)

− 2x3z−1

s(1− s)

(
−1

2

)
x

(s− 1)x(−s)x
(1)3x

4F3

(
1, 1− x, 1− x, 1− x

3
2
− x, 2− s− x, 1 + s− x

∣∣∣∣ 1

z

)∣∣∣∣∣ .
The terms inside the absolute value vanish when | Im(x)| 7→ ∞. To see this, use the
estimates

4F3

(
1, 1

2
+ x, 1− s+ x, s+ x

1 + x, 1 + x, 1 + x

∣∣∣∣ z) ≈ 1F0

(
1
∣∣∣∣ z) =

1

1− z

4F3

(
1, 1− x, 1− x, 1− x

3
2
− x, 2− s− x, 1 + s− x

∣∣∣∣ 1

z

)
≈ 1F0

(
1
∣∣∣∣ 1

z

)
=

z

z − 1
,

(1− s)x
(
1
2

)
x

(s)x

(1)3x
≈ sin πs

(πi Im(x))3/2
,

2x3

s(1− s)

(
−1

2

)
x

(s− 1)x(−s)x
(1)3x

≈ − sin πs

(πi Im(x))3/2
,

which are valid when | Im(x)| is large, and when z 6∈ [0,∞). Thus if | Im(x)| is
sufficiently large (which rules out the possibility of x lying in a neighborhood of
the poles {s, 1

2
, 1 − s}), then Yx(z) = O

(
| Im(x)|−3/2e−π Im(x)

)
. The estimate holds

uniformly if z lies in a compact subinterval of (−1, 0), so a linear independence
argument suffices to show that mi(x) = O

(
| Im(x)|−3/2e−π Im(x)

)
for each i.

We have proved that mi(x) is periodic and meromorphic, with possible simple
poles if x ∈ {s, 1

2
, 1− s}. We conclude that

e−iπx cos πx(cos2 πx− cos2 πs)mi(x) (20)

is analytic for Re(x) ∈ [0, 1). This new function has period 1, so it is also analytic
on C. If | Im(x)| is sufficiently large, then mi(x) = O

(
| Im(x)|−3/2e−π Im(x)

)
. Thus

by elementary properties of the trigonometric functions, (20) becomes

e−iπx cos πx(cos2 πx− cos2 πs)mi(x) =O
(
eπ Im(x)e3π| Im(x)||mi(x)|

)
=O

(
| Im(x)|−3/2e3π| Im(x)|) .

Therefore the function has a Fourier series which terminates:

e−iπx cos πx(cos2 πx− cos2 πs)mi(x) = a
(0)
i + a

(1)
i cos(2πx) + a

(2)
i sin(2πx).

After collecting constants in (19), and noting that Y0(z) = y0(z), we conclude that
Yx(z) has the form given in (16). �

Since yx(z) is analytic in a neighborhood of x = 0, we have a Maclaurin series of
the form

yx(z)

y0(z)
= 1 + φ1(q)x+ φ2(q)x

2 + φ3(q)x
3 +O(x4), (21)
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where z and q are related by (8). Since yx(z)/y0(z) is non-holomorphic in z, we
expect each φi(q) to be non-holomorphic in q.

Theorem 1. Assume that s ∈ (0, 1), z 6∈ {0, 1}, and let φi(q) be as in (21). Then

1

πy0(z)

∞∑
n=1

(1)3n
(s)n

(
1
2

)
n

(1− s)n
z−n

n3

= π2i csc2 (πs)− π

3

(
1 + 3 csc2(πs)

)
φ1(q)− iφ2(q) +

1

π
φ3(q).

(22)

By Proposition 1, we also have

∞∑
n=1

(1)3n
(s)n

(
1
2

)
n

(1− s)n
(a− bn)

n3
z−n

= π2i csc2 (πs)− π

3

(
1 + 3 csc2(πs)

)(
φ1(q)− q log |q|dφ1(q)

dq

)
− i
(
φ2(q)− q log |q|dφ2(q)

dq

)
+

1

π

(
φ3(q)− q log |q|dφ3(q)

dq

)
.

(23)

The sums in (22) and (23) diverge if |z| < 1, however the identities remain valid
when 4F3 and 5F4 functions are substituted.

Proof. From (15) and (13) we see that

Yx(z) = yx(z) +O(x3).

This is sufficient to determine u and v in (16). From (13) we find

yx(z)

y0(z)
= 1 + φ1(q)x+ φ2(q)x

2 + φ3(q)x
3 +O(x4).

By (16) we also have

Yx(z)

y0(z)
=1 + iπ(1− 2v)x+ π2

(
−2− 2u+ 2v + csc2(πs)

)
x2

− iπ3

3

(
5 + 6u− 4v + (−3 + 6v) csc2(πs)

)
x3 +O(x4),

(24)

where s and z satisfy the appropriate restrictions. The Taylor coefficients of Yx(z)
and yx(z) agree up to order x2. This leads to a pair of equations

φ1(q) = iπ(1− 2v)

φ2(q) = π2
(
−2− 2u+ 2v + csc2(πs)

)
,

from which it is easy to solve for u and v.
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The companion series arises from the x3 coefficient of Yx(z). By (15) and (13) we
have

1

y0(z)

∞∑
n=1

(1)3n
(s)n

(
1
2

)
n

(1− s)n
z−n

n3
=

1

y0(z)

2z−1

s(1− s)4
F3

(
1, 1, 1, 1

3
2
, 2− s, 1 + s

∣∣∣∣ 1

z

)
= lim

x→0

(
yx(z)− Yx(z)

y0(z) x3

)
=φ3(q) +

iπ3

3

(
5 + 6u− 4v + (−3 + 6v) csc2(πs)

)
.

We recover (22) by eliminating u and v. �

Despite the fact that (22) and (23) hold for many values of s, it is probably only
possible to evaluate φi(q) if s ∈ {1

2
, 1
3
, 1
4
}. We prove formulas for φi(q) below.

Theorem 2. Suppose that q lies in a neighborhood of zero. When s = 1
2
:

φ1(q) = log q, (25)

φ2(q) =
1

2
log2 q +

π2

2
, (26)

φ3(q) =
1

6
log3 q +

π2

2
log q − 6ζ(3)− 16

∞∑
n=1

σ3(n)

n3
qn + 4

∞∑
n=1

σ3(n)

n3
q4n. (27)

When s = 1
3
:

φ1(q) = log q, (28)

φ2(q) =
1

2
log2 q +

2π2

3
, (29)

φ3(q) =
1

6
log3 q +

2π2

3
log q − 10ζ(3)− 30

∞∑
n=1

σ3(n)

n3
qn + 10

∞∑
n=1

σ3(n)

n3
q3n. (30)

When s = 1
4
:

φ1(q) = log q, (31)

φ2(q) =
1

2
log2 q + π2, (32)

φ3(q) =
1

6
log3 q + π2 log q − 20ζ(3)− 80

∞∑
n=1

σ3(n)

n3
qn + 40

∞∑
n=1

σ3(n)

n3
q2n. (33)

Proof. The essential idea is to apply the Picard-Fuchs operator which annihilates
y0(z). Recall that P is defined in (17). It was proved in [13, Prop. 2.2], that

Pyx(z) =
(1− s)x

(
1
2

)
x

(s)x

(1)3x
zxx3 = x3 +O(x4). (34)

When x = 0, we immediately obtain the homogeneous differential equation Py0(z) =
0. If yx(z) is expanded in a Maclaurin series with respect to x, then by (21) we have



RAMANUJAN SERIES UPSIDE-DOWN 11

P (y0(z)φ1(q)) = 0 and P (y0(z)φ2(q)) = 0. Appealing to [19, Lemma 1], we see that(
q
d

dq

)3

φ1(q) = 0,

(
q
d

dq

)3

φ2(q) = 0, (35)

and integrating gives

φ1(q) =α0 + α1 log q + α2 log2 q, (36)

φ2(q) =β0 + β1 log q + β2 log2 q, (37)

where the αi’s and βi’s are undetermined constants. Examining the x3 coefficient of
yx(z), leads to the inhomogeneous differential equation P [y0(z)φ3(q)] = 1. By [19,
Lemma 1] and [13, Eqn. 2.33], we find that(

q
d

dq

)3

φ3(q) =
√

1− z y20(z). (38)

In order to solve (38), and to determine the constants in (36) and(37), it is necessary
to specify the value of s.

Suppose that q lies in a neighborhood of zero. When s = 1
2

we have
√

1− z =
1 − 2λ(q), where λ(q) = θ42(q)/θ

4
3(q) is the elliptic lambda function [13, Sect. 2.5].

By standard theta function inversion formulas, we also have

y0(z) = θ43(q). (39)

Identity (39) does not hold for |q| < 1. For instance, if q is close to 1 we have to

replace (39) with y0(z) = log2(q)
π2 θ43(q). For |q| sufficiently small

y20(z)
√

1− z = θ83(q)− 2θ43(q)θ
4
2(q)

= 1− 16
∞∑
n=1

σ3(n)qn + 162

∞∑
n=1

σ3(n)q4n,

where the second equality follows from [4, pg. 126, Entry 13]. Integrating (38) gives

φ3(q) =γ0 + γ1 log q + γ2 log2 q +
1

6
log3 q

− 16
∞∑
n=1

σ3(n)
qn

n3
+ 4

∞∑
n=1

σ3(n)
q4n

n3
,

(40)

where the γi’s are constants.
There are nine constants left to calculate. Let q tend to zero in (21). Since z has

a q-series of the form z = 64q + O(q2), it follows that z ≈ 64q when q approaches
zero. In a similar manner we find that y0(z) ≈ 1. By (21) we have

q−xyx(z) = q−xy0(z)
(
1 + φ1(q)x+ φ2(q)x

2 + φ3(q)x
3 +O(x4)

)
≈ q−x

(
1 + φ1(q)x+ φ2(q)x

2 + φ3(q)x
3 +O(x4)

)
. (41)
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From the definition of q−xyx(z), we calculate

q−xyx(z) =q−xzx
(
1
2

)3
x

(1)3x

(
1 +

∞∑
n=1

zn
(
1
2

+ x
)3
n

(1 + x)3n

)

≈64x
(
1
2

)3
x

(1)3x
(1 + 0) (42)

Compare the Maclaurin series coefficients of (41) and (42) in x, x2, and x3. Since
(42) is holomorphic at x = 0, it follows that (41) is holomorphic at x = 0 as well.
Since q tends to zero, this implies that the powers of log(q) must drop out of the
series obtained from (41). Comparing coefficients then provides sufficiently many
relations to determine the values of αi, βi, and γi explicitly. The cases when s = 1

3

and s = 1
4

require analogous arguments, using appropriate theta functions from
[5]. �

The method fails when s = 1
6
, because of our inability to solve (38). The calcu-

lation is difficult because Ramanujan’s theory of signature-6 modular equations is
incomplete, and as a result it seems to be impossible to find a nice q-series expansion

for
√

1− z y20(z) =
√

1− z 3F2

(
1
6
, 1
2
, 5
6

1,1

∣∣∣ z)2. Notice that (38) is equivalent to(
q
d

dq

)3

φ3(q) =
1− 504

∑∞
n=1

n5qn

1−qn√
1 + 240

∑∞
n=1

n3qn

1−qn

. (43)

If we could obtain a reasonable expression for φ3(q), then it might be possible to
evaluate a companion series with s = 1

6
. Experimental searches failed to turn up

any interesting identities, and this suggests that the task is impossible.

4. Explicit Formulas

Now we prove companion series evaluations. Proposition 2 reduces every com-
panion series to elementary constants and values of the following special function:

F (q) :=− log3 |q|
3π

+
120

π
ζ(3) +

240

π

∞∑
j=1

Li3(q
j)− log |qj|Li2(q

j). (44)

Notice that F (q) is closely related to the elliptic trilogarithm [20]. Set q = e2πiτ ,
with τ = x+ iy, and y > 0. In Proposition 3 we prove

Re (F (q)) =
120y3

π2
S
(
1, 2x, x2 + y2; 2

)
. (45)

It is easy to see that F (q) is real-valued if q ∈ (−1, 1), so (45) becomes a formula
for F (q) whenever x ∈ Z/2. Glasser and Zucker proved that S(A,B,C; t) reduces
to Dirichlet L-values quite often. Their formulas lead to precisely 65 evaluations of
F (q), when x = 0 and y2 ∈ N. For instance, when (x, y) = (0,

√
7), we have

F
(
e−2π

√
7
)

= 175
√

7L−7(2).
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Various additional values of F (q) are provided in Table 1. The formulas in Theorems
3 and 4 are proved by evaluating linear combinations of F (q)’s.

Proposition 2. Suppose that q lies in a neighborhood of zero, and that (a, b, z) and
q are related by (8) and (9). When s = 1

2
:

∞∑
n=1

(1)3n(
1
2

)3
n

(a− bn)

n3
z−n =− 1

15
F (q) +

1

60
F (q4)

+
log3(q)

6π
− log2(q) log |q|

2π
+

log3 |q|
3π

− i

2
log2(q) + i log(q) log |q|

− 5

6
π log(q) +

5

6
π log |q|+ iπ2

2
.

(46)

When s = 1
3
:

∞∑
n=1

(1)3n(
1
3

)
n

(
1
2

)
n

(
2
3

)
n

(a− bn)

n3
z−n =− 1

8
F (q) +

1

24
F (q3)

+
log3(q)

6π
− log2(q) log |q|

2π
+

log3 |q|
3π

− i

2
log2(q) + i log(q) log |q|

− π log(q) + π log |q|+ 2iπ2

3
.

(47)

When s = 1
4
:

∞∑
n=1

(1)3n(
1
4

)
n

(
1
2

)
n

(
3
4

)
n

(a− bn)

n3
z−n =− 1

3
F (q) +

1

6
F
(
q2
)

+
log3(q)

6π
− log2(q) log |q|

2π
+

log3 |q|
3π

− 1

2
i log2(q) + i log(q) log |q|

− 4

3
π log(q) +

4

3
π log |q|+ iπ2.

(48)

Proof. Proofs follow from combining Theorems 1 and 2. In particular, we obtain
formulas (46) through (48), by substituting the results of Theorem 2 into (23). �

Proposition 3. Let q = e2πiτ , with τ = x+ iy, and y > 0. Then

F (q) =
120y3

π2
S(1, 2x, x2 + y2; 2) +

60i

π2

∑
n,k
n 6=0

(k + nx) ((k + nx)2 + 3n2y2)

n3 ((k + nx)2 + n2y2)2
.

(49)
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If x ∈ Z/2 and y > 0, then

F (q) =
120y3

π2
S(1, 2x, x2 + y2; 2). (50)

If 2x/(x2 + y2) ∈ Z and y > 0, then

F (q) =
120y3

π2
S(1, 2x, x2 + y2; 2) +

4iπ2

3
x

(
x2 + 3y2

(x2 + y2)2
+ x2 + 3y2 − 5

)
. (51)

Proof. The proof below is slightly technical, but we have included it for the sake
of completeness. It is important to note that the statement of this proposition and
more, is contained in [20, Part II, Section 7]. By (44) we obtain

F (q) =
8π2

3
(Im τ)3 +

120

π

∞∑
n=1

(
1

n3
+

2

n3

∞∑
j=1

qjn +
4π Im(τ)

n2

∞∑
j=1

jqjn

)

=
8π2

3
(Im τ)3 +

120

π

∞∑
n=1

(
1

n3

1 + qn

1− qn
+

4π Im(τ)

n2

qn

(1− qn)2

)

=
8π2

3
(Im τ)3 +

60

π

∞∑
n=−∞
n6=0

(
i cot(πnτ)

n3
− π Im(τ) csc2(πnτ)

n2

)
.

Substitute the partial fractions decompositions:

cot(πnτ) =
1

π

∞∑
k=−∞

1

k + τn
, π csc2(πnτ) =

1

π

∞∑
k=−∞

1

(k + τn)2
,

to obtain

F (q) =
8π2

3
(Im τ)3 +

60

π2

∞∑
n,k=−∞
n 6=0

i

n3(k + nτ)
− Im(τ)

n2(k + nτ)2
. (52)

Formula (49) follows from setting τ = x + iy, and then isolating the real and
imaginary parts of the function. We complete the proof of (50) by noting that
F (q) is real valued whenever x ∈ Z/2.

To complete the proof of (51) we need to evaluate the following sum:

T (x, y) :=
∑
n,k
n6=0

(k + nx) ((k + nx)2 + 3n2y2)

n3 ((k + nx)2 + n2y2)2
.

Extract the k = 0 term, to obtain

T (x, y) =
π4

45

x(x2 + 3y2)

(x2 + y2)2
+
∑
k
k 6=0

∑
n
n6=0

(k + nx) ((k + nx)2 + 3n2y2)

n3 ((k + nx)2 + n2y2)2
.
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When k 6= 0 the inner sum can be evaluated by the residues method. Mathematica
produces the following formula:

∞∑
n=−∞
n6=0

(k + nx) ((k + nx)2 + 3n2y2)

n3 ((k + nx)2 + n2y2)2

=− x(π2k2 − 9y2 − 3x2)

3k4

− π sin

(
2πkx

x2 + y2

) (x2 + y2)
(

cosh2 πky
x2+y2

− cos2 πkx
x2+y2

)
+ kπy sinh 2kπy

x2+y2

2k3
(

cosh2 πky
x2+y2

− cos2 πkx
x2+y2

)2 .

If 2x/(x2 + y2) ∈ Z, then the second term vanishes. Thus we are left with

T (x, y) =
π4

45

x(x2 + 3y2)

(x2 + y2)2
−
∑
k
k 6=0

x(π2k2 − 9y2 − 3x2)

3k4

=
π4

45
x

(
x2 + 3y2

(x2 + y2)2
+ x2 + 3y2 − 5

)
,

and (51) follows. �

4.1. Convergent rational formulas. Now we prove rational, convergent, com-
panion series formulas. Virtually all of these results have appeared in the literature
before, although we believe this is their first unified treatment. Equation (55) was
proved by Zeilberger [21, Theorem 8]. Formulas (53), (54), (56) are due to Guillera
[11], [12]. Equations (57) through (61) were conjectured by Sun [18]. Formula (58)
was subsequently proved by Guillera [14], and the Hessami-Pilehroods proved (59)
[15]. Our strategy is to express each companion series in terms of F (q)’s, and then
to evaluate F (q) using properties of Epstein zeta functions. The hypergeometric-
side of the formula also requires values of (a, b, z). We will refrain from rigorously
calculating (a, b, z) in this paper, however all three quantities can be calculated in
a reasonably straight-forward manner using techniques outlined in [3] or [7]. We
summarize the values of (a, b, z) and the corresponding q’s in Table 2.

Theorem 3. The following formulas are true:

∞∑
n=1

(−1)n+1 (1)3n(
1
2

)3
n

(4n− 1)

n3
= 16L−4(2), (53)

∞∑
n=1

(1)3n(
1
2

)3
n

(3n− 1)

n3

1

22n
=
π2

2
, (54)

∞∑
n=1

(1)3n(
1
2

)3
n

(21n− 8)

n3

1

26n
=
π2

6
, (55)
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q F (q)

e−2π 80L−4(2)

e−2π
√
2 80

√
2L−8(2)

e−2π
√
3 135

√
3L−3(2)

e−2π
√
4 280L−4(2)

e−2π
√
5 100

√
5L−20(2) + 96L−4(2)

e−2π
√
6 120

√
6L−24(2) + 90

√
3L−3(2)

e−2π
√
7 175

√
7L−7(2)

e−2π
√
8 280

√
2L−8(2) + 240L−4(2)

e−2π
√
9 560L−4(2) + 180

√
3L−3(2)

e−2π
√
10 200

√
10L−40(2) + 192

√
2L−8(2)

e−2π
√
12 480L−4(2) + 1035

2

√
3L−3(2)

e−2π
√
13 260

√
13L−52(2) + 480L−4(2)

e−2π
√
15 375

2

√
15L−15(2) + 468

√
3L−3(2)

e−2π
√
16 480

√
2L−8(2) + 1100L−4(2)

e−2π
√
18 880

√
2L−8(2) + 540

√
3L−3(2)

e−2π
√
21 210

√
21L−84(2) + 210

√
7L−7(2) + 480L−4(2) + 360

√
3L−3(2)

e−2π
√
22 440

√
22L−88(2) + 330

√
11L−11(2)

e−2π
√
24 420

√
6L−24(2) + 480

√
2L−8(2) + 720L−4(2) + 495

√
3L−3(2)

e−2π
√
25 480

√
5L−20(2) + 2320L−4(2)

e−2π
√
28 1435

2

√
7L−7(2) + 1920L−4(2)

e−2π
√
30 300

√
30L−120(2) + 288

√
6L−24(2) + 225

√
15L−15(2) + 630

√
3L−3(2)

e−2π
√
33 330

√
33L−132(2) + 330

√
11L−11(2) + 1440L−4(2) + 630

√
3L−3(2)

Table 1. Selected values of F (q).

∞∑
n=1

(−1)n+1 (1)3n(
1
2

)3
n

(3n− 1)

n3

1

23n
= 2L−4(2), (56)

∞∑
n=1

(1)3n(
1
2

)
n

(
1
3

)
n

(
2
3

)
n

(10n− 3)

n3

(
2

27

)2n

=
π2

2
, (57)

∞∑
n=1

(1)3n(
1
2

)
n

(
1
3

)
n

(
2
3

)
n

(11n− 3)

n3

(
16

27

)n
= 8π2, (58)

∞∑
n=1

(−1)n+1 (1)3n(
1
2

)
n

(
1
3

)
n

(
2
3

)
n

(15n− 4)

n3

1

4n
= 27L−3(2), (59)
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∞∑
n=1

(−1)n+1 (1)3n(
1
2

)
n

(
1
4

)
n

(
3
4

)
n

(5n− 1)

n3

(
3

4

)2n

=
45

2
L−3(2), (60)

∞∑
n=1

(1)3n(
1
2

)
n

(
1
4

)
n

(
3
4

)
n

(35n− 8)

n3

(
3

4

)4n

= 12π2. (61)

Proof. We begin by proving (53). Set q = −e−π
√
2 in (46). We have (a, b, z) =(

1
2
, 2,−1

)
. The formula reduces to

1

2

∞∑
n=1

(−1)n+1 (1)3n(
1
2

)3
n

(4n− 1)

n3
= − 1

15
F
(
−e−π

√
2
)

+
1

60
F
(
e−4π

√
2
)
.

Apply (50) to reduce the equation to

∞∑
n=1

(−1)n+1 (1)3n(
1
2

)3
n

(4n− 1)

n3
=

64
√

2

π2
S(1, 0, 8; 2)− 4

√
2

π2
S

(
1, 1,

3

4
; 2

)

=
64
√

2

π2
(S(1, 0, 8; 2)− S (3, 4, 4; 2)) .

Glasser and Zucker have evaluated S(1, 0, 8; t) for all t [10]. Their method also
applies to S(3, 4, 4; t) = S(3, 2, 3; t). When t = 2, the formulas become

S(1, 0, 8; 2) =
7π2

48
L−8(2) +

π2

8
√

2
L−4(2),

S(3, 4, 4; 2) =
7π2

48
L−8(2)− π2

8
√

2
L−4(2),

and the result follows.
Next consider (54). Set q = ie−π

√
3/2 in (46). We have (a, b, z) =

(
− i

2
,−3i

2
, 4
)
.

The formula reduces to

i

2

∞∑
n=1

(1)3n(
1
2

)3
n

(3n− 1)

n3

1

22n
=

3iπ2

8
− 1

15
F
(
ie−π

√
3/2
)

+
1

60
F
(
e−2π

√
3
)
.

Equate the imaginary parts, and apply (51). The equation reduces to

∞∑
n=1

(1)3n(
1
2

)3
n

(3n− 1)

n3

1

22n
=

3π2

4
− 2

15
ImF

(
ie−π

√
3/2
)

=
π2

2
.

Next we prove (55). Set q = e3πi/4e−π
√
7/4 in (46). We have (a, b, z) =

(
−2i,−21i

4
, 64
)
.

The formula reduces to

i

4

∞∑
n=1

(1)3n(
1
2

)3
n

(21n− 8)

n3

1

26n
=

9π2i

64
− 1

15
F
(
e3πi/4e−π

√
7/4
)

+
1

60
F
(
−e−π

√
7
)
.
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Equate the imaginary parts, then apply (51). We obtain

∞∑
n=1

(1)3n(
1
2

)3
n

(21n− 8)

n3

1

26n
=

9π2

16
− 4

15
ImF

(
e3πi/4e−π

√
7/4
)

=
π2

6
.

Next consider (56). Set q = −e−π in (46). We have (a, b, z) = (1, 3,−8). The
formula reduces to

∞∑
n=1

(1)3n(
1
2

)3
n

(3n− 1)

n3

(−1)n+1

23n
= − 1

15
F
(
−e−π

)
+

1

60
F
(
e−4π

)
.

Apply (50) to obtain

∞∑
n=1

(1)3n(
1
2

)3
n

(3n− 1)

n3

(−1)n+1

23n
=− 1

π2
S

(
1, 1,

1

2
; 2

)
+

16

π2
S(1, 0, 4; 2)

=2L−4(2).

In the final step we used S(1, 0, 4; 2) = 7π2

24
L−4(2), and S

(
1, 1, 1

2
; 2
)

= 4S(2, 2, 1; 2) =

4S(1, 0, 1; 2) = 8π2

3
L−4(2). Both of these evaluations follow from the results of

Glasser and Zucker [10].

Now consider (57). Set q = e2πi/3e−2π
√
2/3 in (47). We have (a, b, z) =

(
−i,−10i

3
, 27

2

)
.

The formula reduces to

i

3

∞∑
n=1

(1)3n(
1
3

)
n

(
1
2

)
n

(
2
3

)
n

(10n− 3)

n3

(
2

27

)n
=

26π2i

81
− 1

8
F
(
e2πi/3e−2π

√
2/3
)

+
1

24
F
(
e−2π

√
2
)
.

Take imaginary parts, then apply (51). We obtain

∞∑
n=1

(1)3n(
1
3

)
n

(
1
2

)
n

(
2
3

)
n

(10n− 3)

n3

(
2

27

)n
=

26π2

27
− 3

8
ImF

(
e2πi/3e−2π

√
2/3
)

=
π2

2
.

Next we prove (58). Set q = eπi/3e−π
√
11/3 in (47). We have (a, b, z) =

(
− i

4
,−11i

12
, 27
16

)
.

The formula reduces to

i

12

∞∑
n=1

(1)3n(
1
3

)
n

(
1
2

)
n

(
2
3

)
n

(11n− 3)

n3

(
16

27

)n
=

64π2i

81
− 1

8
F
(
eπi/3e−π

√
11/3
)

+
1

24
F
(
−e−π

√
11
)
.

Take imaginary parts, then apply (51). We have

∞∑
n=1

(1)3n(
1
3

)
n

(
1
2

)
n

(
2
3

)
n

(11n− 3)

n3

(
16

27

)n
=

256π2

27
− 3

2
ImF

(
eπi/3e−π

√
11/3
)

= 8π2.



RAMANUJAN SERIES UPSIDE-DOWN 19

Now prove (59). Set q = −e−π
√
15/3 in (47). We have (a, b, z) =

(
4

3
√
3
, 5√

3
,−4

)
.

The formula reduces to

1

3
√

3

∞∑
n=1

(1)3n(
1
3

)
n

(
1
2

)
n

(
2
3

)
n

(15n− 4)

n3

(−1)n+1

4n
= −1

8
F
(
−e−π

√
15/3
)

+
1

24
F
(
−e−π

√
15
)
.

Apply (50) to obtain
∞∑
n=1

(1)3n(
1
3

)
n

(
1
2

)
n

(
2
3

)
n

(15n− 4)

n3

(−1)n+1

4n
=− 75

√
5

8π2
S

(
1, 1,

2

3
; 2

)
+

675
√

5

8π2
S (1, 1, 4; 2)

=
675
√

5

8π2
(S(1, 1, 4; 2)− S(2, 3, 3; 2)) .

Glasser and Zucker have calculated S(1, 1, 4; t) for all t [10]. Their method also
applies to S(2, 3, 3; t) = S(2, 1, 2; t). When t = 2 the formulas reduce to

S(1, 1, 4; 2) =
π2

6
L−15(2) +

4π2

25
√

5
L−3(2),

S(2, 3, 3; 2) =
π2

6
L−15(2)− 4π2

25
√

5
L−3(2),

and (59) follows.

Next we prove (60). Set q = −e−π
√
3 in (48). We have (a, b, z) =

(
1√
3
, 5√

3
,−16

9

)
.

The formula reduces to

1√
3

∞∑
n=1

(1)3n(
1
4

)
n

(
1
2

)
n

(
3
4

)
n

(5n− 1)

n3
(−1)n+1

(
3

4

)2n

= −1

3
F
(
−e−π

√
3
)

+
1

6
F
(
e−2π

√
3
)
.

By (50), we have
∞∑
n=1

(1)3n(
1
4

)
n

(
1
2

)
n

(
3
4

)
n

(5n− 1)

n3
(−1)n+1

(
3

4

)2n

=− 45

π2
S(1, 1, 1; 2) +

180

π2
S(1, 0, 3; 2)

=
45

2
L−3(2).

Glasser and Zucker proved that S(1, 0, 3; 2) = 3π2

8
L−3(2), and S(1, 1, 1; 2) = π2L−3(2)

[10].

Finally prove (61). Set q = ie−π
√
7/2 in (48). We have (a, b, z) =

(
−4i

9
,−35i

18
, 256

81

)
.

The formula reduces to

i

18

∞∑
n=1

(1)3n(
1
4

)
n

(
1
2

)
n

(
3
4

)
n

(35n− 8)

n3

(
3

4

)4n

=
7π2i

8
− 1

3
F
(
ie−π

√
7/2
)

+
1

6
F
(
−e−π

√
7
)
.

Take the imaginary part, then apply (51). We obtain
∞∑
n=1

(1)3n(
1
4

)
n

(
1
2

)
n

(
3
4

)
n

(35n− 8)

n3

(
3

4

)4n

=
63π2

4
− 6 ImF

(
ie−π

√
7/2
)

=12π2.
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s q a b z

1
2

−e−π
√
2 1

2
2 −1

1
2

ie−π
√
3/2 − i

2
−3i

2
4

1
2

e3πi/4e−π
√
7/4 −2i −21i

4
64

1
2

−e−π 1 3 −8

1
3

e2πi/3e−2π
√
2/3 −i −10i

3
27
2

1
3

eπi/3e−π
√
11/3 − i

4
−11i

12
27
16

1
3

−e−π
√
15/3 4

3
√
3

5√
3
−4

1
4

−e−π
√
3 1√

3
5√
3
−16

9

1
4

ie−π
√
7/2 −4i

9
−35i

18
256
81

Table 2. Values of (a, b, z) in Theorem 3.

�

Table 2 summarizes the values of (a, b, z) and q in Theorem 3. These values
also lead to divergent formulas for 1/π. For instance, when s = 1

3
and (a, b, z) =(

4
3
√
3
, 5√

3
,−4

)
, we obtain (59), and

1

π
=

4

3
√

3
4F3

( 1
3
, 1

2
, 2

3
, 19

15

1, 1, 4
15

∣∣∣∣ − 4

)
.

The above formula is rigorously proved, but it is worth noting that Mathematica

returns a numerical value for the the right-hand side, which agrees perfectly with
1/π = .3183098 . . . .

4.2. Divergent rational formulas. Next we examine divergent hypergeometric
formulas for Dirichlet L-values. These are companions to the convergent formulas
for 1/π. Since the identities have |z| < 1, we have substituted a 5F4 function for the
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divergent companion series:

∞∑
n=1

(1)3n
(s)n

(
1
2

)
n

(1− s)n
(a− bn)

n3
z−n

=
2(a− b)
s(1− s)z 5F4

(
1, 1, 1, 1, 2− a

b
3
2
, 1 + s, 2− s, 1− a

b

∣∣∣∣ z−1) .
(62)

The 5F4 function has a branch cut on the interval [1,∞) [16, pg. 405]. When
z−1 lies on the branch cut, the function takes a complex value. The real part of
the function is uniquely defined, but the sign of the imaginary part depends on
the direction from which we approach the branch cut. We use the same computa-
tional method as Mathematica 8, if z−1 ∈ [1,∞) then we define 5F4

(
· · ·
∣∣ z−1) =

limδ 7→0+ 5F4

(
· · ·
∣∣ z−1 − iδ). We note that the values of (a, b, z) and q in Tables 3

and 4 were extracted directly from the tables of Chan and Cooper [7].

Theorem 4. The following identity holds:

2(a− b)
s(1− s)z 5F4

(
1, 1, 1, 1, 2− a

b
3
2
, 1 + s, 2− s, 1− a

b

∣∣∣∣ z−1) = L(2), (63)

for the values of s, (a, b, z), and L(2) in Tables 3 and 4.

Proof. Proofs are the same as in Theorem 3, so we only consider one example in

detail. Set q = e−π
√
7 in (46). By Table 4, we have s = 1

2
and (a, b, z) =

(
5
16
, 21

8
, 1
64

)
.

Applying (50) and then (62), reduces the formula reduces to

−1184 5F4

(
1, 1, 1, 1, 79

42
3
2
, 3
2
, 3
2
, 37
42

∣∣∣∣ 64

)
= 4iπ2 − 1

15
F
(
e−π

√
7
)

+
1

60
F
(
e−4π

√
7
)

= 4iπ2 − 112
√

7

π2
(S(4, 0, 7; 2)− S(1, 0, 28; 2)) .

By the results of Glasser and Zucker [10], we obtain

S(1, 0, 28; 2) =
41π2

384
L−7(2) +

2π2

7
√

7
L−4(2),

S(4, 0, 7; 2) =
41π2

384
L−7(2)− 2π2

7
√

7
L−4(2),

and we recover the value of L(2) in Table 4. After simplifying, we find that

5F4

(
1, 1, 1, 1, 79

42
3
2
, 3
2
, 3
2
, 37
42

∣∣∣∣ 64

)
= − 2

37
L−4(2)− 1

296
π2i.

All of the formulas in Tables 3 and 4 follow from analogous arguments. �
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s q a b z < 0 L(2)

1
2
−e−π

√
2 1

2
4
2

−1 8L−4(2)

1
2
−e−π

√
4 1

2
√
2

6
2
√
2

−1
8

16
√

2L−8(2)

1
3
−e−π

√
9/3

√
3
4

5
√
3

4
− 9

16
10
√

3L−3(2)

1
3
−e−π

√
17/3 7

12
√
3

51
12
√
3

− 1
16

30
√

3L−3(2)

1
3
−e−π

√
25/3

√
15
12

9
√
15

12
− 1

80
15
√

15L−15(2)

1
3
−e−π

√
41/3 106

192
√
3

1230
192
√
3
− 1

210
120
√

3L−3(2)

1
3
−e−π

√
49/3 26

√
7

216
330
√
7

216
− 1

3024
70
√

7L−7(2)

1
3
−e−π

√
89/3 827

1500
√
3

14151
1500

√
3
− 1

5002
390
√

3L−3(2)

1
4
−e−π

√
5 3

8
20
8

−1
4

32L−4(2)

1
4
−e−π

√
7 8

9
√
7

65
9
√
7

−162

632
35
2

√
7L−7(2)

1
4
−e−π

√
9 3

√
3

16
28
√
3

16
− 1

48
60
√

3L−3(2)

1
4
−e−π

√
13 23

72
260
72

− 1
182

160L−4(2)

1
4
−e−π

√
25 41

√
5

288
644
√
5

288
− 1

5·722 160
√

5L−20(2)

1
4
−e−π

√
37 1123

3528
21460
3528

− 1
8822

800L−4(2)

Table 3. Values of (a, b, z) with z < 0 in Theorem 4.

4.3. Irrational formulas. We emphasize that the vast majority of companion se-
ries formulas involve irrational values of (a, b, z). Consider the narrow class of for-
mulas which arises from setting q = e−2π

√
v in (48). The companion series with

s = 1
4

reduces to a linear combination of S(1, 0, v; 2), S(1, 0, 4v; 2), and elementary
constants. There are 24 values of v ∈ N, for which both sums reduces to Dirichlet
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s q a b z > 0 L(2)

1
2

e−π
√
3 1

4
6
4

1
4

16L−4(2) + 2π2i

1
2

e−π
√
7 5

16
42
16

1
64

64L−4(2) + 4π2i

1
3

e−π
√

8/3 1
3
√
3

6
3
√
3

1
2

15
2

√
3L−3(2) + 2π2i

1
3

e−π
√

16/3 8
27

60
27

2
27

40L−4(2) + 10
3
π2i

1
3

e−π
√

20/3 8
15
√
3

66
15
√
3

4
125

39
√

3L−3(2) + 4π2i

1
4

e−2π 2
9

14
9

32
81

20L−4(2) + 3π2i

1
4

e−π
√
6 1

2
√
3

8
2
√
3

1
9

30
√

3L−3(2) + 4π2i

1
4

e−π
√
10 4

9
√
2

40
9
√
2

1
81

64
√

2L−8(2) + 6π2i

1
4

e−π
√
18 27

49
√
3

360
49
√
3

1
74

180
√

3L−3(2) + 10π2i

1
4

e−π
√
22 19

18
√
11

280
18
√
11

1
992

110
√

11L−11(2) + 12π2i

1
4

e−π
√
58 4412

9801
√
2

105560
9801

√
2

1
994

960
√

2L−8(2) + 30π2i

Table 4. Values of (a, b, z) with z > 0 in Theorem 4.

L-values [10]. The v = 1 case produces a rational, albeit divergent, companion se-
ries (Theorem 4 with s = 1

4
and (a, b, z) =

(
2
9
, 14

9
, 32
81

)
). The other 23 choices lead

to formulas with complicated algebraic values of (a, b, z). While it is possible to
determine those numbers from modular equations, it is usually much easier to use
a computer. Formulas (8) and (9) are rather unwieldy for computational purposes,
so we found it convenient to use theta functions. Suppose that s = 1

2
, and that q
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lies in a neighborhood of zero. Then substituting (11) directly into (9) gives

z =4
θ43(−q)
θ43(q)

(
1− θ43(−q)

θ43(q)

)
,

a =
1

πθ43(q)

(
1 +

8 log |q|
θ3(q)

∞∑
n=1

n2qn
2

)
,

b =
log |q|
π

(
1− 2

θ43(−q)
θ43(q)

)
,

(64)

where

θ3(q) = 1 + 2
∞∑
n=1

qn
2

.

More complicated formulas are required if s ∈ {1
3
, 1
4
}.

To give an example of an irrational formula, set q = e9πi/8e−π
√
15/8 in (46). We

calculate (a, b, z) ≈ (11.09i, 26.54i, 3006.63). The PSLQ algorithm returns the fol-
lowing polynomials:

0 =1− 11ia+ a2,

0 =495− 1680ib+ 64b2,

0 =4096− 3008z + z2.

Therefore (a, b, z) =
(

1
2
i
(
11 + 5

√
5
)
, 3
8
i
(
35 + 16

√
5
)
, 1
4

(
1 +
√

5
)8)

. After simplify-

ing with (51), we arrive at the following identity:

π2

30
=
∞∑
n=1

3(35 + 16
√

5)n− 4(11 + 5
√

5)

n3
(
2n
n

)3
(√

5− 1

2

)8n

. (65)

This should be compared to Ramanujan’s irrational formula for 1/π, since both
formulas involve powers of the golden ratio [17]. Table 5 contains many additional
irrational formulas.

5. Irreducible values of S(A,B,C; 2)

Irreducible values of S(A,B,C; 2) occur when the quadratic form An2 + Bnm+
Cm2 fails the one class per genus test. Apart from a few oddball cases, it is probably
impossible to reduce these sums to Dirichlet L-functions [23]. In this section, we
prove that it is still possible to express some irreducible values of S(A,B,C; 2) in
terms of hypergeometric functions. Propositions 2 and 3 reduce every interesting
companion series to two values of S(A,B,C; 2). Sometimes it is possible to select
q, so that one sum reduces to Dirichlet L-values, and one sum does not. Sometimes
both values of S(A,B,C; 2) are irreducible, but one of them can be eliminated by
finding a multi-term linear dependence with Dirichlet L-functions.

To make a first attempt at finding a formula, set q = e−3π in (46). Then s = 1
2

and (a, b, z) =
(
1
4
(18r − 5r3), 12r − 3r3, (7 + 4

√
3)−2

)
, where r = 4

√
12. By (50),
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s q a b |z| > 1 Value of equation (4)

1
2
−e−π

√
2

2
3+2
√
2

2
8+5
√
2

2
−8

(
√
2−1)3 2L−4(2)−

√
2L−8(2)

1
2

−e−π2 14+10
√
2

2
33+24

√
2

2
−16
√
2

(
√
2−1)6 −13

4
L−4(2) + 2

√
2L−8(2)

1
2
−e−π

√
2

3
59+24

√
6

6
140+56

√
6

6
−1

(5−2
√
6)4

136
9
L−4(2)− 16

3

√
6L−24(2)

1
2
−e−π 2

√
3

3
3
√
6+7
√
2

24
6
√
6+30

√
2

24
−1

2(
√
3−1)6 16

√
2L−8(2)− 8

√
6L−24(2)

1
2
−e−π

√
6

3
5+4
√
2

6
12+12

√
2

6
−1

(
√
2−1)4 −8L−4(2) + 16

3

√
2L−8(2)

1
2
−e−π

√
10
5

23+10
√
5

10
60+24

√
5

10
−1

(
√
5−2)4

56
5
L−4(2)− 4

√
5L−20(2)

1
2

e
9πi
8 e−π

√
15
8

4(11+5
√
5)

8
i 3(35+16

√
5)

8
i 214

(
√
5−1)8 − 1

240
π2i

1
3
−e−π

√
21
3

10+7
√
7

54
21+39

√
7

54
−1

26
√
7−68 −20L−4(2) + 35

4

√
7L−7(2)

1
4
−e−π

√
21
3

27+20
√
3

72
84+112

√
3

72
−1

(42−24
√
3)2

−160
3
L−4(2) + 40

√
3L−3(2)

1
4
−e− 3π

√
5

5
3987+2124

√
3

4840
19380+7440

√
3

4840
−1

(680
√
3−1178)2

544
5
L−4(2)− 72

√
3L−3(2)

Table 5. Selected convergent irrational companion series evaluations.

the companion series equals a linear combination of S(1, 0, 36; 2), S(4, 0, 9; 2) and
elementary constants. We eliminate S(4, 0, 9; 2) with a result from [22]:

S(1, 0, 36; t) + S(4, 0, 9; t) =
(
1− 2−t + 21−2t) (1 + 31−2t)L1(t)L−4(t)

+
(
1 + 2−t + 21−2t)L−3(t)L12(t).

(66)

After noting that L1(2) = π2

6
and L12(2) = π2

6
√
3
, we obtain a divergent formula:

2

π2
S(1, 0, 36; 2) =

49

182
L−4(2) +

11

48
√

3
L−3(2)

−

(
161 + 93

√
3

18 4
√

12

)
Re

[
5F4

(
1, 1, 1, 1, 21+

√
3

12

3
2
, 3
2
, 3
2
, 9+

√
3

12

∣∣∣∣∣ (7 + 4
√

3)2

)]
.
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Many additional divergent formulas exist, but these formulas are virtually useless
from a computational perspective. Rapidly converging formulas are somewhat more
exciting.

Consider the restriction on q imposed in Proposition 2. To obtain an s = 1
2

companion series from (46), we must select q to lie in a neighborhood of zero.
Unwinding the proof of Theorem 2, shows that we can only select values of q for
which

θ43(q) = 3F2

(
1
2
, 1

2
, 1

2

1, 1

∣∣∣∣ 4
θ43(−q)
θ43(q)

(
1− θ43(−q)

θ43(q)

))
holds (similar restriction exist when s = 1

3
and s = 1

4
). This constraint implies that

the allowable values on the real axis are q ∈ (−1, e−π). If q ∈ (−e−π
√
2, e−π) then

|z| < 1, and the companion series diverges. On the other hand, if q ∈ (−1,−e−π
√
2)

then |z| > 1, and we obtain convergent formulas. Suppose that q = e2πi(
1
2
+iy), so

that q lives on the negative real axis. Then by (50) we find

F (q) =F
(
−e−2πy

)
=

120y3

π2
S

(
1, 1,

1

4
+ y2; 2

)
,

F (q4) =F
(
e−8πy

)
=

120(4y)3

π2
S
(
1, 0, 16y2; 2

)
.

(67)

Elementary manipulations suffice to prove

S

(
1, 1,

1

4
+ y2; t

)
= −S(1, 0, y2; t) + 18S(1, 0, 4y2; t)− 16S(1, 0, 16y2; t). (68)

Now we prove the formula for S(1, 0, 36; 2) quoted in the introduction (equation
(6)). Set q = −e−π/3 in (46). Using the results above (with y = 1

6
), we conclude

F
(
−e−π/3

)
=

90

π2
(9S(1, 0, 9; 2)− 8S(1, 0, 36; 2)− 8S(4, 0, 9; 2))

F
(
e−4π/3

)
=

2880

π2
S(4, 0, 9; 2).

We can eliminate S(4, 0, 9; 2) with (66), and S(1, 0, 9; 2) simplifies via

S(1, 0, 9; t) = (1 + 31−2t)L1(t)L−4(t) + L−3(t)L12(t).

Putting everything together in (46), and simplifying (a, b, z) with (64), produces the
desired formula for S(1, 0, 36; 2).

Next consider (46) when q = −e−π/
√
5. Applying (67) and (68) with y = 1√

20
,

reduces the companion series to a linear combination of S(1, 0, 20; 2), S(4, 0, 5; 2)
and S(1, 0, 5; 2). We can eliminate the latter two sums with

S(4, 0, 5; t) + S(1, 0, 20; t) =(1− 2−t + 21−2t)L1(t)L−20(t) + (1 + 2−t + 21−2t)L−4(t)L5(t)

S(1, 0, 5; t) =L1(t)L−20(t) + L−4(t)L5(t).
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Zucker proved the first identity [24], and the second appears in [10]. Thus we arrive
at

16
√

5

π2
S(1, 0, 20; 2) =

5
√

5

3
L−20(2) +

104

25
L−4(2)−

∞∑
n=1

(1)3n(
1
2

)3
n

(a− bn)

n3
z−n (69)

where

z =− 8

(
617 + 276

√
5 + 2

√
5
(

38078 + 17029
√

5
))

,

a =
34

5
+ 3
√

5 +
1

2

√
9032

25
+

808√
5
,

b =16 + 7
√

5 +
1

2

√
9728

5
+

4352√
5
.

This formula also converges rapidly, because z ≈ −1.9× 104.
We conclude the paper with one final example. To obtain a formula for S(1, 0, 52; 2),

set q = −e−π/
√
13 in (46). Applying (67) and (68) with y = 1√

52
, reduces the com-

panion series to an expression involving S(1, 0, 52; 2), S(4, 0, 13; 2), and S(1, 0, 13; 2).
The latter two sums can be eliminated with

S(1, 0, 52; t) + S(4, 0, 13; t) =(1− 2−t + 21−2t)L1(t)L−52(t) + (1 + 2−t + 21−2t)L−4(t)L13(t)

S(1, 0, 13; t) =L1(t)L−52(t) + L−4(t)L13(t).

Zucker proved the first formula [24], and the second appears in [10]. Therefore, we
obtain

16
√

13

π2
S(1, 0, 52; 2) =

5
√

13

3
L−52(2) + 8L−4(2)−

∞∑
n=1

(1)3n(
1
2

)3
n

(a− bn)

n3
z−n, (70)

where

z =− 8

(
3367657 + 934020

√
13 + 90

√
2800274982 + 776656541

√
13

)
,

a =
4266

13
+ 91
√

13 +
1

13

√
2
(

18194697 + 5046301
√

13
)
,

b =720 +
2595√

13
+

48

26

√
13
(

23382 + 6485
√

13
)
.

Notice that z ≈ −1.07× 108, so the formula converges rapidly.

6. Conclusion

In conclusion, it might be interesting to try to classify all of the values of S(A,B,C; 2)
which can be treated using the ideas in Section 5. It would also be extremely
interesting if the methods from Section 3 could be used to say something about
3-dimensional lattice sums such as the Madelung constant.
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