
f (c) = f (d) = 0 and
∫ b

x=a f (x) dx 6= 0. Let p be a real number with p > 1. Show
that the map φ from S to R given by

φ( f ) =

∫ b
a | f

′′(x)|p dx∣∣∣∫ b
a f (x) dx

∣∣∣p

attains a minimum on S, and find that minimum in terms of p, a, b, c, d .

11619. Proposed by Christopher Hillar, Mathematical Research Sciences Institute,
Berkeley, CA. Given an n × n complex matrix A, its field of values F(A) is given
by

F(A) = {x∗Ax : x∗x = 1} .

(Here, x∗ is the conjugate transpose of x .) Call a matrix A completely invertible if 0
is not an element of F(A). Prove that if A is completely invertible then A−1 is also
completely invertible.

11620. Proposed by Mathew Rogers, Université de Montréal, Montreal, Canada. Let
Hk be the kth Hermite polynomial, given by Hk(x) = (−1)kex2 dk

dxk e−x2
. Suppose

1
1
...

1

 =


1
ρ1+ρ1

1
ρ1+ρ2

· · ·
1

ρ1+ρM
1

ρ2+ρ1

1
ρ2+ρ2

· · ·
1

ρ2+ρM
...

...
. . .

...
1

ρM+ρ1

1
ρM+ρ2

· · ·
1

ρM+ρM




1
ρ1
1
ρ2
...
1
ρM

 ,
where ρ1, . . . , ρM are complex numbers for which

∑M
k=1 1/ρk > 0. Prove that each ρk

is a root of the equation

HM(i x)− i
√

2M HM−1(i x) = 0.

SOLUTIONS

Steiner–Lehmus Theorem

11511 [2010, 558]. Proposed by Retkes Zoltan, Szeged, Hungary. For a triangle ABC ,
let f A denote the distance from A to the intersection of the line bisecting angle B AC
with edge BC , and define fB and fC similarly. Prove that ABC is equilateral if and
only if f A = fB = fC .

Solution by H. T. Tang, Hayward, CA. The “only if” part is clear. The “if” part fol-
lows from the Steiner–Lehmus Theorem: If the bisectors of the base angles of a tri-
angle are equal, then the triangle is isosceles. This problem was proposed in 1840 by
D. C. Lehmus (1780–1863) to Jacob Steiner (1796–1863). For a proof of the Steiner–
Lehmus Theorem, see for example N. Altschiller-Court, College Geometry (Johnson
Pub. Co., Richmond, VA, 1925), p. 72–73; or L. S. Shiveley, An Introduction to Mod-
ern Geometry (Wiley & Sons, New York, 1884), p. 141.

Also solved by R. Bagby, M. Bataille (France), D. Beckwith, P. Budney, M. Can, R. Chapman (U. K.), R.
Cheplyaka & V. Lucic & L. Pebody, J. E. Cooper III, C. Curtis, P. P. Dályay (Hungary), P. De (India), M. J.
Englefield (Australia), D. Fleischman, V. V. Garcı́a (Spain), J. Grivaux (France), E. A. Herman, L. Herot,
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